↳ Prolog
↳ PrologToPiTRSProof
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
PERM_IN(L, .(H, T)) → U31(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
PERM_IN(L, .(H, T)) → APPEND2_IN(parts(V, .(H, U)), is(sum(L)))
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → U11(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND2_IN(parts(X, Y), is(sum(Z)))
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U41(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → APPEND1_IN(parts(V, U), is(sum(W)))
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → U21(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND1_IN(parts(X, Y), is(sum(Z)))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U51(L, H, T, perm_in(W, T))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → PERM_IN(W, T)
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
PERM_IN(L, .(H, T)) → U31(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
PERM_IN(L, .(H, T)) → APPEND2_IN(parts(V, .(H, U)), is(sum(L)))
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → U11(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND2_IN(parts(X, Y), is(sum(Z)))
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U41(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → APPEND1_IN(parts(V, U), is(sum(W)))
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → U21(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND1_IN(parts(X, Y), is(sum(Z)))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U51(L, H, T, perm_in(W, T))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → PERM_IN(W, T)
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND1_IN(parts(X, Y), is(sum(Z)))
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
APPEND1_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND1_IN(parts(X, Y), is(sum(Z)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ PiDP
↳ PiDP
APPEND1_IN(parts(.(H, X), Y)) → APPEND1_IN(parts(X, Y))
No rules are removed from R.
APPEND1_IN(parts(.(H, X), Y)) → APPEND1_IN(parts(X, Y))
POL(.(x1, x2)) = x1 + 2·x2
POL(APPEND1_IN(x1)) = 2·x1
POL(parts(x1, x2)) = 2·x1 + x2
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ PiDP
↳ PiDP
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND2_IN(parts(X, Y), is(sum(Z)))
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
APPEND2_IN(parts(.(H, X), Y), is(sum(.(H, Z)))) → APPEND2_IN(parts(X, Y), is(sum(Z)))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ PiDP
APPEND2_IN(is(sum(.(H, Z)))) → APPEND2_IN(is(sum(Z)))
No rules are removed from R.
APPEND2_IN(is(sum(.(H, Z)))) → APPEND2_IN(is(sum(Z)))
POL(.(x1, x2)) = x1 + 2·x2
POL(APPEND2_IN(x1)) = 2·x1
POL(is(x1)) = 2·x1
POL(sum(x1)) = 2·x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
↳ PiDP
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
PERM_IN(L, .(H, T)) → U31(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → PERM_IN(W, T)
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U41(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
perm_in(L, .(H, T)) → U3(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U3(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U4(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U4(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → U5(L, H, T, perm_in(W, T))
perm_in([], []) → perm_out([], [])
U5(L, H, T, perm_out(W, T)) → perm_out(L, .(H, T))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
PERM_IN(L, .(H, T)) → U31(L, H, T, append2_in(parts(V, .(H, U)), is(sum(L))))
U41(L, H, T, V, U, append1_out(parts(V, U), is(sum(W)))) → PERM_IN(W, T)
U31(L, H, T, append2_out(parts(V, .(H, U)), is(sum(L)))) → U41(L, H, T, V, U, append1_in(parts(V, U), is(sum(W))))
append2_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U1(H, X, Y, Z, append2_in(parts(X, Y), is(sum(Z))))
append2_in(parts([], Y), is(sum(Y))) → append2_out(parts([], Y), is(sum(Y)))
append1_in(parts(.(H, X), Y), is(sum(.(H, Z)))) → U2(H, X, Y, Z, append1_in(parts(X, Y), is(sum(Z))))
append1_in(parts([], Y), is(sum(Y))) → append1_out(parts([], Y), is(sum(Y)))
U1(H, X, Y, Z, append2_out(parts(X, Y), is(sum(Z)))) → append2_out(parts(.(H, X), Y), is(sum(.(H, Z))))
U2(H, X, Y, Z, append1_out(parts(X, Y), is(sum(Z)))) → append1_out(parts(.(H, X), Y), is(sum(.(H, Z))))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
U31(append2_out(parts(V, .(H, U)))) → U41(H, append1_in(parts(V, U)))
PERM_IN(L) → U31(append2_in(is(sum(L))))
U41(H, append1_out(is(sum(W)))) → PERM_IN(W)
append2_in(is(sum(.(H, Z)))) → U1(H, append2_in(is(sum(Z))))
append2_in(is(sum(Y))) → append2_out(parts([], Y))
append1_in(parts(.(H, X), Y)) → U2(H, append1_in(parts(X, Y)))
append1_in(parts([], Y)) → append1_out(is(sum(Y)))
U1(H, append2_out(parts(X, Y))) → append2_out(parts(.(H, X), Y))
U2(H, append1_out(is(sum(Z)))) → append1_out(is(sum(.(H, Z))))
append2_in(x0)
append1_in(x0)
U1(x0, x1)
U2(x0, x1)
U31(append2_out(parts(V, .(H, U)))) → U41(H, append1_in(parts(V, U)))
PERM_IN(L) → U31(append2_in(is(sum(L))))
POL(.(x1, x2)) = 1 + x1 + x2
POL(PERM_IN(x1)) = 1 + 2·x1
POL(U1(x1, x2)) = 1 + x1 + x2
POL(U2(x1, x2)) = 1 + x1 + x2
POL(U31(x1)) = 2·x1
POL(U41(x1, x2)) = 1 + x1 + 2·x2
POL([]) = 0
POL(append1_in(x1)) = x1
POL(append1_out(x1)) = x1
POL(append2_in(x1)) = x1
POL(append2_out(x1)) = x1
POL(is(x1)) = x1
POL(parts(x1, x2)) = x1 + x2
POL(sum(x1)) = x1
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ DependencyGraphProof
U41(H, append1_out(is(sum(W)))) → PERM_IN(W)
append2_in(is(sum(.(H, Z)))) → U1(H, append2_in(is(sum(Z))))
append2_in(is(sum(Y))) → append2_out(parts([], Y))
append1_in(parts(.(H, X), Y)) → U2(H, append1_in(parts(X, Y)))
append1_in(parts([], Y)) → append1_out(is(sum(Y)))
U1(H, append2_out(parts(X, Y))) → append2_out(parts(.(H, X), Y))
U2(H, append1_out(is(sum(Z)))) → append1_out(is(sum(.(H, Z))))
append2_in(x0)
append1_in(x0)
U1(x0, x1)
U2(x0, x1)